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An artificial intelligence-enabled ECG algorithm for the 
identification of patients with atrial fibrillation during sinus 
rhythm: a retrospective analysis of outcome prediction
Zachi I Attia*, Peter A Noseworthy*, Francisco Lopez-Jimenez, Samuel J Asirvatham, Abhishek J Deshmukh, Bernard J Gersh, Rickey E Carter, 
Xiaoxi Yao, Alejandro A Rabinstein, Brad J Erickson, Suraj Kapa, Paul A Friedman

Summary
Background Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart 
failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. 
We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using 
machine learning.

Methods We developed an artificial intelligence (AI)-enabled electrocardiograph (ECG) using a convolutional neural 
network to detect the electrocardiographic signature of atrial fibrillation present during normal sinus rhythm using 
standard 10-second, 12-lead ECGs. We included all patients aged 18 years or older with at least one digital, normal 
sinus rhythm, standard 10-second, 12-lead ECG acquired in the supine position at the Mayo Clinic ECG laboratory 
between Dec 31, 1993, and July 21, 2017, with rhythm labels validated by trained personnel under cardiologist 
supervision. We classified patients with at least one ECG with a rhythm of atrial fibrillation or atrial flutter as 
positive for atrial fibrillation. We allocated ECGs to the training, internal validation, and testing datasets in a 
7:1:2 ratio. We calculated the area under the curve (AUC) of the receiver operatoring characteristic curve for the 
internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated 
model performance on the testing dataset by calculating the AUC and the accuracy, sensitivity, specificity, and 
F1 score with two-sided 95% CIs.

Findings We included 180 922 patients with 649 931 normal sinus rhythm ECGs for analysis: 454 789 ECGs recorded 
from 126 526 patients in the training dataset, 64 340 ECGs from 18 116 patients in the internal validation dataset, and 
130 802 ECGs from 36 280 patients in the testing dataset. 3051 (8·4%) patients in the testing dataset had verified atrial 
fibrillation before the normal sinus rhythm ECG tested by the model. A single AI-enabled ECG identified atrial 
fibrillation with an AUC of 0·87 (95% CI 0·86–0·88), sensitivity of 79·0% (77·5–80·4), specificity of 79·5% 
(79·0–79·9), F1 score of 39·2% (38·1–40·3), and overall accuracy of 79·4% (79·0–79·9). Including all ECGs acquired 
during the first month of each patient’s window of interest (ie, the study start date or 31 days before the first recorded 
atrial fibrillation ECG) increased the AUC to 0·90 (0·90–0·91), sensitivity to 82·3% (80·9–83·6), specificity to 83·4% 
(83·0–83·8), F1 score to 45·4% (44·2–46·5), and overall accuracy to 83·3% (83·0–83·7).

Interpretation An AI-enabled ECG acquired during normal sinus rhythm permits identification at point of care of 
individuals with atrial fibrillation.

Funding None.

Copyright © 2019 Elsevier Ltd. All rights reserved.

Introduction
Atrial fibrillation is common, underdiagnosed, and 
associated with an increased risk of stroke, heart failure, 
and mortality.1,2 Screening for atrial fibrillation can be 
challenging due to the low diagnostic yield of a single 
electrocardiograph (ECG) to detect an often fleeting 
arrhythmia and the cumbersome nature of prolonged 
monitoring. Clinical risk scores can be used to identify 
patients at risk but have only modest performance. Due 
to these limitations, major medical societies have issued 
inconsistent guidelines on atrial fibrillation screening.

A low-cost, widely available, and non-invasive test that 
facilitates identification of patients who are likely to have 

atrial fibrillation would have important diagnostic and 
therapeutic implications. For instance, up to a third of 
strokes have no known cause—so-called embolic stroke 
of undetermined source (ESUS).3 Many of these strokes 
are related to atrial fibrillation, which can be under-
detected due to its paroxysmal and often asymptomatic 
nature.4 Patients with ESUS are at high risk of a recurrent 
stroke, and when atrial fibrillation is documented, 
anticoagulation reduces the risk of recurrent stroke and 
might reduce mortality.5,6 However, empirical use of 
anticoagulants following ESUS, whether with warfarin 
or a direct oral anticoagulant, has not been shown to be 
beneficial7,8 and increases risk of bleeding;7–9 therefore, 
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determination of whether atrial fibrillation is present is 
crucial to guide therapy.

Prolonged ambulatory cardiac rhythm monitoring is 
frequently used to screen for atrial fibrillation, 
particularly after ESUS. Approaches include insertion of 
implantable loop recorders and wearable patches.1,2 
These strategies are invasive or inconvenient, expensive, 
require a monitoring infrastructure, and have a low 
yield.10

There is growing evidence that patients who develop 
atrial fibrillation—even in an apparently normal heart—
have structural changes in the atria that predispose 
towards atrial arrhythmias;11 these changes might be 
important for the pathogenesis of ischaemic or embolic 
stroke. We have previously used machine learning in the 
form of deep neural networks to identify subtle patterns 
in the standard 12-lead ECG to identify the presence of 
asymptomatic ventricular dysfunction.12

We hypothesised that we could train a neural network 
to identify the subtle findings present in a standard 
12-lead ECG acquired during normal sinus rhythm that 
are due to structural changes associated with a history of 
(or impending) atrial fibrillation. Such a diagnostic test 
could be inexpensive, widely available, and immensely 
useful following ESUS to guide therapy. To test this 
hypothesis, we trained, validated, and tested a deep 
neural network using a large cohort of patients from the 
Mayo Clinic Digital Data Vault.

Methods
Data sources and study population
We included all patients aged 18 years or older with at least 
one digital, normal sinus rhythm, standard 10-second, 
12-lead ECG acquired in the supine position at the 
Mayo Clinic ECG laboratory between Dec 31, 1993, and 
July 21, 2017. All ECGs were acquired at a sampling rate of 
500 Hz using a GE-Marquette ECG machine (Marquette, 
WI, USA) and the raw data were stored using the 
MUSE data management system. ECGs in our laboratory 
are intially read by the GE-Marquette ECG system and 
then over-read by a physician-supervised, trained tech-
nician, with corrections made to the diagnostic labels as 
needed. For the purposes of the present study, any ECG 
with a rhythm of atrial fibrillation or atrial flutter was 
classified as having atrial fibrillation. We chose this 
classification because guidelines recom mend anticoagu-
lation in the presence of either atrial fibrillation or atrial 
flutter and both rhythms often coexist.13–15 The Mayo Clinic 
Internal Review Board approved waiver of the require-
ment to obtain informed consent in accordance with 
45 CFR 46.116 and waiver of Health Insurance Portability 
and Accountability Act (HIPAA) authorisation in 
accordance with applicable HIPAA regulations.

Identifying study groups 
The Mayo Clinic Digital Data Vault was used to extract 
the labels and raw data from all ECGs acquired from our 

Research in context

Evidence before this study
There is a robust literature on screening for atrial fibrillation in 
the general population; we did not do a formal systematic 
review. However, most efforts have focused on either one-
time screening with a single electrocardiograph (ECG) or the 
use of various implantable or wearable monitors to capture 
infrequent atrial fibrillation episodes over time. Some studies 
have evaluated discrete ECG features—often P wave 
characteristics—as predictors of atrial fibrillation, but no 
individual feature has high enough predictive value to offer 
clinical utility using routine statistical modelling. The intensive 
evaluation of the ECG afforded by a convolutional neural 
network might be able to detect subtle, multifaceted 
perturbations in the ECG. We have previously shown 
convolution neural networks can evaluate the resting ECG for 
detection of antiarrhythmic drug levels, abnormal electrolytes 
levels, and detection of asymptomatic left ventricular 
dysfunction, providing proof of concept that clinically 
important phenomena can be detected with artificial 
intelligence (AI) applications to the ECG.

Added value of this study
This is the first study to our knowledge to use a convolution 
neural network to identify the electrocardiographic signature 
of atrial fibrillation present during sinus rhythm. We used an 

AI model to find signals in the ECG that might be invisible to 
the human eye but contain important information about the 
presence of atrial fibrillation. The AI model was trained using 
the standard 10-second, 12-lead ECG alone and does not 
require any other inputs for atrial fibrillation risk assessment. 
Importantly, the detection of the atrial fibrillation signal in 
the ECG relies on this easily obtained 10-second recording as 
opposed to the more invasive loop recording or cumbersome 
Holter monitoring. We found that an AI model can 
differentiate between patients with a history of (or 
impending) atrial fibrillation with a high degree of accuracy 
using a single routine ECG. Addition of multiple ECGs within 
an individual patient improved the model accuracy and 
suggests repeated measures might yield even better 
performance.

Implications of all the available evidence
Our study supports the hypothesis that subtle patterns on the 
normal sinus rhythm ECG can suggest the presence of atrial 
fibrillation. The ability to identify patients with potentially 
undetected atrial fibrillation using an inexpensive, 
non-invasive, widely available, point-of-care test has important 
practical implications for atrial fibrillation screening and 
potentially for the management of patients with prior stroke 
of unknown cause.
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cohort of patients. We used these data to classify patients 
into two groups: patients positive for atrial fibrillation, 
who had at least one atrial fibrillation rhythm recorded 
on a Mayo Clinic ECG, and patients negative for atrial 
fibrillation, who had no ECGs with atrial fibrillation 
recorded and additionally had no reference to atrial 
fibrillation in the diagnostic codes in their electronic 
medical record. Patients with a diagnosis code for atrial 
fibrillation but no ECG documentation of atrial fibrillation 
were considered to have unverified atrial fibrillation 
and were excluded from the analysis to avoid ambiguity. 
ECGs with paced rhythms were also excluded.

ECG selection for patients with multiple ECGs
Many study patients had multiple ECGs recorded over the 
inclusion period. We defined a window of interest for 
each patient for the purpose of analysis (figure 1). For 
patients who had had at least one atrial fibrillation rhythm 
recorded, we defined the first recorded atrial fibrillation 
ECG as the index ECG and the first day of the window of 
interest as 31 days before the date of the index ECG. We 
chose this window of interest with the assumption that 
the structural changes associated with atrial fibrillation 
would be present before the first recorded atrial fibrillation 
episode; we chose a relatively short time interval as a 
conservative measure to avoid using ECGs before any 
structural changes developed. For patients with no ECGs 
with atrial fibrillation recorded, the index ECG was 
defined as the date of the first ECG available for that 
patient in the Mayo Clinic Digital Data Vault.

During training, all the ECGs in the window of interest 
were used to allow the network to have more samples; for 
the testing and validation sets, only the first normal sinus 
rhythm ECG within the window of interest was used to 
avoid repeated measurements and to mimic a real 
screening scenario.

Outcomes
The primary outcome of the study was the ability of 
the artificial intelligence (AI)-enhanced ECG to identify 
patients with atrial fibrillation using a standard 10-second, 
12-lead ECG recorded during sinus rhythm. This perform-
ance was mathematically assessed by the area under the 
curve (AUC) of the receiver operating characteristic 
(ROC) curve, as well as the sensitivity, specificity, accuracy, 
and F1 score of the model.

We did a secondary analysis to determine whether 
use of more than one sinus rhythm ECG per patient 
improved the AUC of the AI-enabled ECG for the 
detection of a history of atrial fibrillation. We also did a 
secondary analysis including only the first normal sinus 
rhythm after the index atrial fibrillation ECG.

Overview of the AI model
We implemented a convolutional neural network (CNN) 
using the Keras Framework with a Tensorflow (Google; 
Mountain View, CA, USA) backend and Python.16 The 

12-lead ECG is recorded using eight physical leads 
and four augmented leads created as a linear function 
of leads I and II, which do not contain incremental 
information. To optimise performance, we selected 
only the eight independent leads (leads I, II, and V1–6) 
because any linear function of the leads could be learned 
by the models. This reduced the original 12 × 5000 matrix 
(ie, 12 leads by 10-second duration sampled at 500 Hz) to 
a 8 × 5000 matrix. The long axis (5000) represents the 
temporal axis and most of the convolutions were used 
on it to allow the model to extract morphological and 
temporal features, while the short axis (8) represents the 
lead or spatial axis and was only used on layer to fuse 
the data from all the leads.

The network was composed of ten residual blocks, 
which allow the signals to feed directly to the next layer 
in addition to the processing done in the current layer; 
this allows the network to learn even when using a very 
large number of layers (appendix). Each residual block 
was implemented using two blocks, eacah composed of a 
batch-normalisation layer that accounts for normalisation 
of the data distribution; a non-linear ReLU activation 
function with output zero for negative inputs and identity 
output for positive inputs, the  non-linearity of which 
allows the network to create a complex non-linear 
representation of the ECGs for automatic feature 
extraction;17 and a convolution layer. The residual blocks 
were completed with a shortcut link to allow gradient 
propagation that is implemented using a 1 × 1 convolution 
layer between the input of the residual block to its output 
and finally a max pooling layer.18 The nine different 
residual blocks had access to a single lead and the last 
convolution layer fused all eight independent leads using 
a 1 × 8 convolutional layer. Following the last convolu-
tional layer, the data were fed to a dropout layer and 
to the final output layer that was activated using the 
softmax function, which generated a probability of atrial 
fibrillation. The architecture of the model is available in 
the appendix. The model was trained on a computer with 
224 GB ram and four K-80 (NVIDIA) graphics processing 

Figure 1: ECG selection and windows of interest for patients with multiple ECGs
The figure shows an example of ECG selection for two patients with multiple ECGs over the same year. We used all 
normal sinus rhythm ECGs for patients with no ECGs with atrial fibrillation recorded and the window of interest 
began on the date of their first ECG. For patients with at least one atrial fibrillation rhythm recorded, the first ECG 
recording atrial fibrillation or atrial flutter was the index ECG and the window of interest began 31 days before the 
index ECG. For all patients, the window of interest extended until study end. ECG=electrocardiograph.

January February March

31 days
Index ECGFirst ECG available

April

Index ECG (ie, first ECG available)

Window of interest

Window of interest

Patient with no atrial fibrillation rhythms recorded 

Patient with at least one atrial fibrillation rhythm recorded

Normal sinus rhythm
Atrial fibrillation or atrial flutter

See Online for appendix
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units (GPUs) that were used to train the model in parallel 
using the Keras single machine-multi GPU parallelism.

All patients and their digitally available Mayo Clinic 
ECGs included in the cohort were randomly assigned in 
a 7:1:2 ratio to one of three groups: training, internal 
validation, and testing datasets. The training dataset 
contained ECGs from 70% of the patient cohort and was 
used to train the network; the internal validation dataset 
with ECGs from 10% of the cohort was used to optimise 
the network and select the network hyperparameters; 
and the testing dataset, including ECGs from the 
remaining 20% of patients who were not in the training 
or validation datasets, was used to assess the AI-enabled 
ECGs’ ability to detect a history of atrial fibrillation.

A ROC curve was created for the testing and validation 
datasets to assess the AUC of the AI-enabled ECG 
acquired during normal sinus rhythm to determine 
whether atrial fibrillation was present. Using the ROC 
curve for the small internal validation set, we selected a 
probability threshold and applied the same threshold to 
the testing dataset for derivation of the testing dataset 
accuracy, sensitivity, specificity, and F1 score.

Statistical analysis
Statistical optimisation of the CNN was done through 
iterative training using the Keras package. Once a final 
fitted model was obtained, the diagnostic performance 
was more formally analysed. Measures of diagnostic 
performance included the ROC AUC, accuracy (ie, a 
weighted average of sensitivity and specificity indicating 
the percentage of patients whose labels were predicted 
correctly), sensitivity, specificity, and the F1 score (ie, the 
harmonic mean of the sensitivity and positive predictive 

value). We used two-sided 95% CIs to summarise 
the sample variability in the estimates. We used exact 
(Clopper-Pearson) CIs to be conservative for accuracy, 
sensitivity, and specificity. The CI for the AUC was 
estimated using the Sun and Su optimisation of the 
Delong method using the pROC package19 whereas 
the CI for F1 was obtained using the bootstrap method 
with 2000 replications. All analyses were done using R, 
version 3.4.2.

Role of the funding source
This study received no external funding. No entity other 
than the authors listed played any role in the design of 
the study; the collection, analysis, or interpretation of 
data; writing of the report; or in the decision to submit 
the paper for publication. ZIA and REC had full access to 
the data and the final decision to submit the manuscript 
was made by PAF.

Results
We identified 210 414 patients with 1 000 000 ECGs and, 
after applying exclusion criteria, included 180 922 patients 
with 649 931 normal sinus rhythm ECGs for analysis 
(figure 2). We trained the model using 454 789 ECGs 
recorded from 126 526 patients, with a mean of 3·6 ECGs 
(SD 4·8) per patient. In patients with at least one atrial 
fibrillation recorded in the testing dataset, 1698 (55·7%) of 
the 3051 first normal sinus rhythm ECGs in the window 
of interest were within 1 week of the index atrial fibrilla-
tion ECG (median number of days between ECGs 0, 
IQR −4 to 24).

Among all included patients, the mean age was 
60·3 years (SD 16·5) on the date of the index ECG, 
89 791 (49·6%) patients were men, and 15 419 (8·5%) had 
at least one recorded atrial fibrillation. In the internal 
validation set, there were 64 340 ECGs from 18 116 patients 
with a mean of 3·6 ECGs (SD 4·8) per patient. Patients 
had a mean age of 60·3 years (SD 16·7) at their first visit, 
8983 (49·6%) were men, and 1573 (8·7%) had at least one 
recorded atrial fibrillation. In the testing dataset, there 
were 130 802 ECGs from 36 280 patients with a mean of 
3·6 ECGs (4·9) per patient. Patients had a mean age 
of 60·1 years (16·8) at their first visit, 18 068 (49·8%) 
were men, and 3051 (8·4%) had at least one recorded 
atrial fibrillation.

When testing the model on the first sinus rhythm 
ECG for each patient, the ROC AUC for the detection of 
atrial fibrillation was 0·87 (0·86–0·88) using the 
internal validation set and 0·87 (0·86–0·88) using the 
testing dataset (table). The probability value that yielded 
similar sensitivity, specificity, and accuracy of 79·2% on 
the internal validation set was applied to the testing set 
and yielded an F1 score of 39·2% (95% CI 38·1–40·3), 
sensitivity of 79·0% (77·5–80·4), specificity of 79·5% 
(79·0–79·9), and an overall accuracy of 79·4% 
(79·0–79·9; table).We also tested the effect of using 
multiple sinus rhythm ECGs from the same patient, as 

Figure 2: Patient flow diagram
ECG=electrocardiograph.

126 526 patients (70%) with 
454 789 ECGs included 
in the training dataset

18 116 patients (10%) with         
64 340 ECGs included in 
the internal validation 
dataset

180 922 patients with 649 931 normal sinus rhythm ECGs 
included in the analysis

210 414 patients with 1 000 000 ECGs eligible

350 069 ECGs and 29 492 patients excluded
160 442 non-sinus rhythm ECGs from 37 491 patients, 

excluding 9630 patients
82 757 ECGs from 11 880 patients with unverified 

atrial fibrillation
26 718 ECGs from 2657 patients with missing digital 

ECG data or rhythm codes
80 152 normal sinus rhythm ECGs recorded before 

the window of interest from 13 824 patients 
positive for atrial fibrillation, excluding
5325 patients

36 280 patients (20%) with 
130 802 ECGs included 
in the testing set
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the additional data seemed likely to improve the network 
performance of AI-enabled ECG. Multiple ECGs provide 
the model with more information about each patient 
and might mask outliers. When testing the model on all 
of the sinus rhythm ECGs in the first 31 days from the 
study start date and selecting the average and maximum 
probability of atrial fibrillation scores, the AUC 
improved to 0·89 (0·89–0·90) using the average score 
on the test dataset and to 0·90 (0·90–0·91) when 
applying a more sensitive approach of using the score of 
the ECG with the highest risk (figure 3; table). Similar 
improvements were found when doing the same 
analysis on the internal validation set: the AUC 
improved to 0·89 (0·89–0·90) using the average score 
and to 0·90 (0·89–0·91) when applying a more sensitive 
approach of using the score of the ECG with the highest 
risk. In another secondary analysis on the testing 
dataset, we included only the first normal sinus rhythm 
after the onset of atrial fibrillation and the AUC of the 
network improved to 0·90 (0·89–0·91).

As in the primary analysis, we found the probability 
threshold that yielded a similar sensitivity and specificity 
on the internal validation set and used that to classify the 
patients in the testing dataset. When using the maximum 
score with the calculated threshold, the F1 score improved 
to 45·4% (95% CI 44·2–46·5), sensitiv ity improved 
to 82·3% (80·9–83·6), and specificity improved to 
83·4% (83·0–83·8) with an overall accur acy of 83·3% 
(83·0–83·7) on the testing dataset.

Discussion
In this study, we found that the AI-enabled ECG recorded 
during normal sinus rhythm performed well (AUC 0·87 
for a single ECG and 0·90 for multiple) in identifying the 
presence of atrial fibrillation. This compares favourably 
with other medical screening tests such as B-type 
natriuretic peptide for heart failure (AUC 0·60–0·70),20 
Papanicolaou smear for cervical cancer (AUC 0·70),21 
and the CHA2DS2-VASc Score for stroke risk 
(AUC 0·57–0·72). 22 The ability to identify undetected 
atrial fibrillation with an inexpensive, widely available, 
point-of-care test—an ECG recorded during normal 
sinus rhythm—has important practical implications, 
particularly for atrial fibrillation screening efforts or for 
the management of patients with ESUS. This study 
shows the power of leveraging modern computing 
technology, large datasets, non-linear models, and 
automated features extraction using convolution layers 

to potentially improve diagnosis and treatment of a 
highly prevalent and morbid disease state.

Underdiagnosed atrial fibrillation is a major cause 
of ESUS. Furthermore, ESUS is associated with an 
increased risk of recurrent stroke, and when atrial 
fibrillation is found, anticoagulation significantly reduces 
this risk.6 However, several large, prospective, randomised 
studies have shown that empirical use of anticoagulation 
after ESUS provides no benefit and might even cause 
harm, thus excluding the option of population-wide 
provision of anti coagulation without a clinical diagnosis 
of atrial fibrillation.7,8 Although it would require further 
study, it is possible that this algorithm could identify a 
high-risk subset of patients with ESUS who could benefit 
from empirical anticoagulation.

Ambulatory monitoring following stroke or transient 
ischaemic attack for up to 48 h identifies atrial fibril-
lation in 2·4–13·9% of patients,10,23 whereas prolonged 
monitoring with an implantable recorder detects atrial 
fibrillation in 30% of patients at 36 months.1,2 Thus, 
short-term monitoring underdetects atrial fibrillation 
and long-term monitoring leaves a substantial 

AUC Sensitivity Specificity F1 score Accuracy

Main analysis 0·87 (0·86–0·88) 79·0% (77·5–80·4) 79·5% (79·0–79·9) 39·2% (38·1–40·3) 79·4% (79·0–79·9)

Secondary analysis 0·90 (0·90–0·91) 82·3% (80·9–83·6) 83·4% (83·0–83·8) 45·4% (44·2–46·5) 83·3% (83·0–83·7)

Data in parentheses are 95% CIs. In the main analysis, only the score of the first normal sinus rhythm ECG in the window of interest was used. In the secondary analysis, 
the highest score for all ECGs done in the first month of the window of interest was used. AUC=area under the curve. ECG=electrocardiograph.

Table: Model performance

Figure 3: ROC curves for the convolutional neural networks on the testing 
dataset
In the main analysis, only the score of the first normal sinus rhythm ECG in the 
window of interest was used. In the secondary analysis, the highest score for all 
ECGs done in the first month of the window of interest was used. ROC=receiver 
operating characteristic. AUC=area under the curve. ECG=electrocardiograph.
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proportion of patients unprotected from recurrent atrial 
fibrillation and potential recurrent thromboembolic 
events, until such time as atrial fibrillation is detected. 
However, such monitoring is also expensive and can 
prove a burden to patients and clinical practices. Thus, 
identifying those patients who would most benefit from 
intensive monitoring would be valuable in patients after 
ESUS. Our data indicate that a simple, inexpensive, 
non-invasive, 10-second test—the AI-enhanced standard 
ECG—might permit identification of patients with 
underdetected atrial fibrillation. Further investigations 
will be necessary to confirm the diagnostic performance 
of AI-enabled ECG in specific populations, such as 
patients with ESUS or heart failure, to determine 
whether AI-enabled ECG could be used to refine the 
selection of candidates for prolonged ambulatory 
cardiac rhythm monitoring or to guide initiation of 
anticoagulation in these patients.

We also note that the threshold for a positive result 
could be altered for various clinical applications. The 
current binary cutoff was chosen to balance sensitivity 
and specificity, but a more sensitive cutoff point might 
be useful in excluding patients who do not need 
monitoring of atrial fibrillation after stroke or a more 
specific cutoff point could be used for screening of 
otherwise healthy people with a low pretest probability 
of atrial fibrillation, for instance.

The structural changes that precede atrial fibrillation, 
which might include myocyte hypertrophy, fibrosis, and 
chamber enlargement, are likely to lead to subtle ECG 
changes, allowing for prediction of underlying atrial 
fibrillation. For example, although seldom reported on 
ECGs, evidence of interatrial block (ie, Bayés syndrome) 
has been shown to correlate with both risk of incident 
atrial fibrillation and stroke.24,25 Moreover, studies suggest 
that normal sinus rhythm on an ECG might not reflect 
overall atrial function. Nearly a third of patients with 
atrial fibrillation undergoing cardioversion have non-
sinus contraction of the left atrial appendage despite 
apparent sinus rhythm on the surface ECG.26 Additionally, 
in one study,27 nearly a quarter of patients undergoing 
transoesophageal echocardiogram showed fibrillation of 
the left atrial appendage despite apparent sinus rhythm 
on the ECG. Thus, it is possible that wavelets on the ECG 
smaller than the readily observable P wave might reflect 
regional non-sinus electrical activity in these patients. 
A neural network trained with exposure to more than 
500 000 ECGs and with sufficient depth to extract and 
recall subtle features not routinely appreciated or 
formally reported by human observers might be powerful 
enough to identify such features, which might account 
for our findings.

Once a network is trained, it can be applied to any 
standard digital 12-lead ECG with minimal computing 
power requirements; for example, a smartphone could 
process the signals. In the future, this might facilitate 
point-of-care diagnosis by allowing application of the 

algorithm on low-cost, widely available technologies. For 
instance, we have previously shown the translation of 
neural networks created using 12-lead ECGs to mobile, 
smartphone-based electrodes that typically include a 
single lead.28

The algorithm output could also be seen as a biomarker. 
One could draw a comparison between this algorithm 
and a glycated haemoglobin value in that they both 
provide an indicator of a disease state averaged over time. 
An individual ECG, which might or might not show 
atrial fibrillation, could be analogous to a random blood 
glucose test, which might or might not accurately reflect 
the presence of diabetes. However, just as an elevated 
glycated haemoglobin value can detect diabetes in a 
patient with an isolated normal fasting glucose, the 
AI-enabled ECG can detect atrial fibrillation in a patient 
during normal sinus rhythm.

This result is borne out by prior work from our 
group using neural networks to screen for the presence 
of asymptomatic left ventricular dysfunction using a 
standard 12-lead ECG, wherein the network effectively 
identified patients with ventricular dysfunction 
(AUC 0·93).12 We found that the network predicted 
the future development of ventricular dysfunction, 
indicating that early disease affects myocytes’ ability to 
generate electrical currents in a subtle manner before 
development of overt dysfunction. That finding suggests 
that, in a similar manner, the present network might 
identify structural disease before atrial fibrillation 
develops.

Other research teams have evaluated discrete ECG 
features (eg, PR interval, P wave dispersion, P wave 
signal averaging) as predictors of atrial fibrillation, but 
no individual feature has high enough predictive value to 
offer clinical utility. It is likely that these various features 
interact in some non-linear fashion that cannot be 
accounted for through traditional statistical methods or 
algorithmic approaches.

Computational approaches such as neural networks 
afford the ability to consider complex datasets in the 
context of all contained data rather than preselected 
discrete data elements. However, a key limitation in 
existing neural networks is explainability. Identifying 
these features could be of importance because they might 
offer novel findings that could provide new therapeutic 
targets or allow for more certainty for clinicians who are 
otherwise trying to understand what drives the network’s 
interpretation. Finding ways to peer into this so-called 
black box is an area of active ongoing investigation.

Our work is best understood in the context of its 
limitations. Patients were considered negative for atrial 
fibrillation if they did not have any verified atrial 
fibrillation, but it is likely that some patients in this 
group had undetected atrial fibrillation and were thus 
labelled incorrectly. As a corollary, we can hypothesise 
that some of the false-positive patients identified by the 
network as having a history of atrial fibrillation despite 
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being classified as negative for atrial fibrillation might 
actually have had undiagnosed atrial fibrillation.

Although the prevalence of atrial fibrillation in our study 
is similar to other large clinical ECG datasets,29 it might be 
higher than in the general population.30 The network, 
therefore, has been trained for retrospective classification 
of clinically indicated ECGs more so than for atrial 
fibrillation prediction in unselected patients. We anticipate 
that the network would perform well in other datasets of 
clinically indicated ECGs but would need further 
prospective calibration before widespread application to 
screening of a broader, ostensibly healthy population is 
justified.

In conclusion, an AI-enabled ECG acquired during 
normal sinus rhythm permits point-of-care identification 
of individuals with a high likelihood of atrial fibrillation. 
This result could have important implications for atrial 
fibrillation screening and for the management of patients 
with unexplained stroke.
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